

Malik Mubashir HASSAN

Stagiaire, ARMOR 2 IRISA

Supervisors: Bernad Cousin

Miklos Molnar

Plan

- Introduction of Group Communications
- Various types of Group Communications
- Multicast
- Problems of Multicast
- Multicast Forwarding Algorithms
- Multicast Routing
- Explicit Multicast Routing
- Extensions and Generalization of Multicast

Group Communication

- Rapid growth of Communications
- Most them are Group Communications
- Goals
 - □ QoS
 - □ Reliability
 - □ Scalability

Types of Group Communication

- Broadcast Communication
- Anycast Communication
- Multi-Unicast Communication
- Multicast Communication

Broadcast Communication

5

Anycast Communication

Multi-unicast Communication

Multicast Communication

Problems of Multicast

- Scalability, "Ability of system to perform well in presence of large number of nodes"
 - □ Group size
 - □ Group awareness
 - □ Group topology
 - Data Forwarding
- Reliability
 - □ Unreliable
 - □ Semi reliable
 - □ Reliable

Multicast Algorithms

- Flooding
- Spanning Tree
- Reverse Path Broadcasting
- Truncated Reverse Path Broadcasting
- Reverse Path Multicasting
- Core based Trees

Multicast Routing Protocols

Distance Vector Multicast Routing Protocol (DVMRP) [2]

- Multicast OSPF (MOSPF) [4,5]
- Protocol Independent Multicast (PIM)

- Xcast is a datagram delivery protocol for efficient small group communication
- Datagram transmitted with "explicit list of unicast addresses of receivers" [9]
- Intermediate routers forward and branch if needed, refering unicast routing tables all routers naturally maintain

- Xcast stores explicitly addresses of all destinations in packet header
- Advantages of Xcast
- Disadvantages of Xcast
- Solutions

Xcast Packet

Advantages of Xcast

- Very effective in small groups
- No need of multicast addresses
- No need for multicast routing protocol
- The source encodes the list of destinations in the Xcast header, which gives a sense of security
- The Xcast packet can be converted into a normal unicast packet : called X2U (Xcast to Unicast)

Disadvantages of Xcast

Disadvantages of Xcast

- Less data/many packets
- Complex header processing at each router
- Xcast capable routers required
- Group membership is required at source
- QoS issue, Xcast uses shortest paths only.

18

Solutions

- Packet fragmentation
- Fix the number of destinations, and send multiple packets
- Explicit Multicast Extension (Xcast+)
- Generalized Explict Multicast (GXcast)

Explicit Multicast Extension (Xcast+)

- Every host (source and destination) is assigned to a designated router
- Instead of client address, DR addresses are encoded in packet
- The DRs receives Xcast stream, Multicasts it (X2M) to destinations

Explicit Multicast Extension (Xcast+)

Generalized Explicit Multicast (GXcast)

- Simultaneous streaming of many identical packets for different groups
- The list of destinations is cut into sub-lists
- Each sub-list corresponds to a destination list for Xcast packets
- Xcast & GXcast can interoperate easily
- Actual Payload doesn't get effected

Generalized Explicit Multicast (GXcast)

Problems of GXcast

- Latency due to extra header processing
- Packets are generated separately for each destination group, so those who are produced at the end, experience a larger delay
- Sorting of packets at source can reduce transmission time

Tree Based Explicit Multicast

- Sender doesn't transmit packets with destination addresses
- Sender send packets with headers containing addresses of routers that act as branching nodes
- Intermediate routers have index of potential members of its branch
- Method is useful when lots of hops are unutilized in way of packet

Tree Based Explicit Multicast

Conclusion

- Numerous types of group communication
- Multicast still proves itself as only choice for communication in very large groups
- Further research is needed to replace traditional Multicast with Explicit Multicast or its extension to overcome constraints of Multicast
- Future research study will be based on Tree Based Explicit Multicast

References

- 1. Ralph Wittmann and Martina Zitterbart, "Multicast Communication Protocols and Applications", Morgan Kaufmann Publishers, June 2000.
- 2. D. Waitzman, C. Partridge, and S. Deering, RFC 1075, "Distance Vector Multicast Routing Protocol", November 1988.
- 3. Steve Deering, RFC 1112, "Host Extensions for IP Multicasting", August 1989.
- 4. John Moy, RFC 1583, "OSPF Version 2", March 1994.
- 5. John Moy, RFC 1584, "Multicast Extensions to OSPF", March 1994.
- 6. A. J. Ballardie, "Core Based Trees (CBT) Multicast Routing Architecture", <draft-ietf-idmr-cbt-arch-04.txt>, June 20, 1995.
- 7. Ali Boudani, Bernard Cousin, "An hybrid explicit multicast/recursive unicast approach for multicast routing", Elsevier, 2005.
- 8. Ali Boudani, Bernard Cousin, "Using Recursive Xcast Packets for Multicast Delivery", IETF draft, March 2003.
- 9. R.Boivie, N.Feldman, Y.Imai, W.Livens, D.Ooms and O.Paridaens, "Explicit multicast (Xcast) basic specification", IETF draft, <draft-ooms-xcast-basic-spec-07.txt>, January 2005.
- 10. C. Hsu, E. Muramoto, J. Buford, Y. Imai, A. Boudani and R. Boivie, "Best Currunt Practices of XCAST (Explicit Multi-Unicast)", Draft IETF, <draft-hsu-xcast-bcp-2004-00.txt>, April 2005.
- 11. M. Sola, M. Ohta, T. Maeno, "Scalability of Internet Multicast Protocols", INET'98, http://www.isoc.org/inet98/proceedings/6d/6d3.htm, 1998.
- 12. M. Shin, Y. Kim, S.Park and S.H.Kim, "Explicit Multicast Extension (Xcast+) for efficient Multicast Packet Delivery", ETRI Journal, Volume 23, Number 4, December 2001.
- Boudani, A. Guitton and B. Cousin, "GXcast: Generalized Explicit Multicast Routing Protocol", Draft IETF, <draft-boudani-gxcast-00.txt>, June 2003.
- 14. A. Boudani, A. Guitton and B. Cousin, "GXcast: Generalized Explicit Multicast Routing Protocol" IEEE, 2004.
- Vijay Arya, Thierry Tuletti and Shivkumar Kalyanaraman, "Encoding of Multicast Tree", IFIP Networking Conference, LNCS 3464, pp. 992-1004, 2005.